Reg. No._____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017

Course Code: EE204

Course Name: DIGITAL ELECTRONICS AND LOGIC DESIGN (EE)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions; each question carries 5 marks

- 1. Perform each of the following conversions:
 - a) $(473)_{10}$ in to BCD code
 - b) BAD in to ASCII
 - c) $(289)_{10}$ in to hexadecimal
 - d) $(110011.110)_2$ in to decimal
 - e) $(53)_8$ in to hexadecimal
- 2. Simplify the following Boolean expression $\overline{AB} + \overline{AC} + \overline{AB}\overline{C}$.
- 3. Design a half adder circuit and realize using NAND gates only.
- 4. Realise a JK flip flop using SR flip flop.
- 5. Draw the logical diagram of a 4 bit ring counter using D flip flop.
- 6. What are the asynchronous inputs of a flip flop and discuss its functions.
- 7. Compare static RAM and dynamic RAM.
- 8. Write the VHDL code for the implementation of a full adder circuit.

PART B

Answer any two questions; each question carries 10 marks

9. Perform arithmetic operation using 2's complement method.

a)
$$-70 - 85$$
 (5)

10. Using a 4 variable K map, simplify,

$$F(A,B,C,D) = \sum m (1,4,9,10,11,12,14) + d (0,8,13)$$

Realize the function using NAND gates only.

(10)

- 11. a) Describe the operation of a basic parity generating and checking logical unit. (5)
 - b) Compare the characteristics of TTL and CMOS logic families.

(5)

PART C

Answer any two questions; each question carries 10 marks

12.	Design a MOD-12 asynchronous counter (ripple counter) using JK flip f	lop. Explain
	the working with truth table and timing diagram.	(10)
13.	a) Draw the block diagram of a 4 bit ALU, and explain it, showing it	s inputs and
	outputs.	(5)
14.	b) Design a BCD to decimal decoder.	(5)
	What are fast adders? Design a 4 bit, carry look ahead adder, showing the	logical
	diagram.	(10)

PART D

Answer any two questions; each question carries 10 marks

15.	Design a counter to obtain the count sequence 2, 4, 3, 6, 2, 4, 3, 6 using	g JK flip
	flop.	(10)
16.	a) Compare the Moore and Mealy state machine models.	(5)
	b) Compare PAL and PLA.	(5)
17. With a neat block schematic, describe the working of a successive approximat		imation
	ADC and illustrate it with a suitable example.	(10)
